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Abstract. We discuss structural aspects of functional integral bosonization of two-dimensional
models. We show that the use of auxiliary vector fields enlarges the Hilbert space by the
introduction of an external field algebra that should not be considered as an element of the
intrinsic algebraic structure defining the model. These aspects are discussed in a model with
well known and established results in the literature, by considering the Abelian reduction of the
Wess–Zumino–Witten theory to reconstruct in the Hilbert space of states Coleman’s proof of the
fermion–boson mapping between the massive Thirring and sine–Gordon theories. We show that
the factorization of the partition function will generally lead to incorrect conclusions concerning
the physical content of the model, such as the existence of infinitely delocalized states and the
violation of the asymptotic factorization property of the Wightman functions. In order to exert
control on the effect of the redundant Bose fields and obtain the fermion–boson mapping in the
Hilbert space of states, the functional integral bosonization must be performed on the generating
functional.

1. Introduction

Over the last few years, an impressive effort has been made by many physicists to understand
the underlying properties of quantum field theories in two dimensions [1], as well as to try
to picture these models as theoretical laboratories to obtain insight into more realistic four-
dimensional field theories and, more recently, to apply them to low-dimensional condensed
matter systems [2], as well as to N -body problems in nuclear physics [3, 4]. After over a
quarter of a century of investigations on two-dimensional field theories we have learned that,
besides their peculiar formal aspects, two-dimensional models also have the value of providing
a better conceptual and structural understanding of general properties of quantum field theory
[4–7].

In the recent efforts towards the extension of the bosonization procedure to 2+1 dimensions
[8], use has been made of an interpolating field procedure that leads to a ‘mapping’ of the
partition function of the original theory into a partition function of Chern–Simons-type theories.
At the present state of the research, and due to the large number of papers on the subject, it seems
to be very instructive to make a foundational investigation of the basic structural properties of
the functional integral bosonization in order to ensure the correct mathematical and physical
interpretation of the established fermion–boson mappings.

In this paper we shall discuss some structural aspects of functional integral bosonization
of two-dimensional Abelian models. In [9, 11] two-dimensional models with quartic Fermi
field interaction have been analysed within the path-integral framework. In [10] the functional
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integral version of Coleman’s proof of the ‘equivalence’ between the massive Thirring and
sine–Gordon theories is presented. The bosonization scheme introduced in [9] requires
the introduction of auxiliary vector fields in the functional integral in order to recast the
theory in terms of a Lagrangian which is quadratic in the Fermi fields. This procedure
has also been applied to the bosonization of the Abelian and non-Abelian Thirring models
[8] in 2 + 1 dimensions. As stressed in [12, 13], the bosonization procedure introduces a
redundant Bose field algebra which contains more degrees of freedom than those needed for
the description of the physical content of the model. However, the structural aspects related
to the appearance of decoupled massless Bose fields in the functional integral bosonization
have not been fully appreciated and clarified in the preceding literature. We shall discuss
the role played by the auxiliary vector field, as well as by the ‘decoupled’ massless scalar
fields in the functional integral bosonization, which are in general obscure in the existing
literature on this subject, since it is common practice [10, 4] to discard these decoupled
fields through the bosonization of the partition function. From our point of view, and
in agreement with the procedure adopted in [9], the most appropriate way to treat the
problem is to perform the bosonization of the generating functional of the theory, from
which we construct the Hilbert space of the model, without disregarding the role played
by the decoupled massless Bose fields. As was shown in [13, 14], by relaxing the control
on the construction of the Hilbert space of two-dimensional anomalous chiral models, some
misleading conclusions on the physical content of the model can arise, such as for instance,
the θ -vacuum representation and the suggested equivalence of the vector Schwinger model
and the chiral Schwinger model defined for the regularization-dependent parameter a = 2
[15]. Within the same approach, the chiral QCD2 was discussed in [14] and it was shown
that a construction based on a redundant field algebra will generally lead to incorrect
conclusions concerning its physical properties, such as the equivalence of chiral and vector
QCD2 and the existence of an infinite degeneracy of the ground state in the chiral U(N)

models.
In order to discuss these subtle aspects involved in the functional integral bosonization, in

this paper we shall consider the well known two-dimensional massive Thirring model. To this
end, we review the presentation of [10] by using the Abelian reduction of the Wess–Zumino–
Witten (WZW) theory [13, 17, 18] to reconstruct in the Hilbert space of states Coleman’s
proof of the fermion–boson mapping between the massive Thirring and sine–Gordon theories
[16]. The redundant decoupled massless Bose fields are kept through the bosonization of the
generating functional of the theory. We show that their only effect is to generate constant
contributions to the Wightman functions in the Hilbert space of states. The original Fermi
field of the massive Thirring model is bosonized in terms of the ‘soliton’ Mandelstam field
and a spurious exponential operator with zero scale dimension. In contrast to what occurs in
two-dimensional gauge theories [20, 21], this spurious field has no physical consequences
and reduces to the identity in the Hilbert space of states. In the present approach close
attention is paid to maintaining complete control on the Hilbert space structure needed for the
representation of the intrinsic field algebra generated by the set of fundamental fields whose
Wightman functions define the model. We show that the factorization of the partition function
of the effective bosonized theory leads to incorrect conclusions concerning the physical content
of the model, such as the existence of infinitely delocalized states and the violation of the
asymptotic factorization property of the Wightman functions (cluster decomposition property).
The present approach clarifies some delicate mathematical aspects which are not evident in
the presentation of [10, 11] and also streamlines the discussion of the massless Thirring model
presented in [9].
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2. Functional integral bosonization

To begin with, consider the two-dimensional Abelian massive Thirring model [16] defined by
the Lagrangian density

L = ψ̄(i�∂ − mo)ψ − 1
2g

2JµJµ (2.1)

where Jµ is the fermionic current†, Jµ = ψ̄γ µψ .
Within the operator formulation the Hilbert space H of the model is constructed as a

representation of the intrinsic field algebra � generated by the set of fundamental local field
operators {ψ̄, ψ}, and whose Wightman functions define the theory, H .= �{ψ̄, ψ}|0〉. The
composite operators belonging to the polynomial field algebra � are the bilocals ψ̄ψ and
ψ̄γ µψ , since only gauge invariance of the first kind is required.

In the functional integral formalism, the Hilbert space of the massive Thirring model can
be built from the generating functional with source terms for the basic fields that generate the
polynomial field algebra �, i.e.

Z[θ, θ̄ ] = N −1
∫

Dψ̄ Dψ eiW[ψ̄,ψ,θ,θ̄ ] (2.2)

where W[ψ̄, ψ, θ, θ̄ ] is the action in the presence of external Grassmann-valued sources θ and
θ̄ ,

W[ψ̄, ψ, θ, θ̄ ] =
∫

d2x {L + ψ̄θ + θ̄ψ}. (2.3)

Following the procedure adopted in [8–10], as a first step in the bosonization of the model
we define an enlarged field algebra �′ by introducing an ‘auxiliary’ vector field aµ, such that
�′ = �′{ψ̄, ψ, aµ}, and considering the ‘interpolating’ generating functional

Z ′[θ, θ̄ , ζµ] = N −1
∫

Dψ̄ Dψ

∫
Daµ exp

{
i
∫

d2x { 1
2a

µaµ + aµζ
µ}

}
eiW[ψ̄,ψ,θ,θ̄ ]. (2.4)

The source term for the auxiliary vector field aµ was included in order to control the effects of
the bosonization on the construction of the Hilbert space H′ .= �′{ψ̄, ψ, aµ}|0〉. As we shall
see, the bosonized generating functional Z ′ defines an enlarged positive semi-definite Hilbert
space.

The next step in the functional bosonization is to reduce the action of the Thirring model
to a quadratic action in the Fermi field by performing the ‘change of variables’ [8, 9]

aµ = Aµ − gJµ (2.5)

such that∫
Daµ exp

{
i
∫

d2x 1
2 {aµaµ − g2JµJµ}

}
=

∫
DAµ exp

{
i
∫

d2x { 1
2AµAµ − gJµAµ}

}
.

(2.6)

† Our conventions are: x± = x0 ± x1; ∂± = ∂0 ± ∂1; A± = A0 ± A1;

g00 = 1 = −g11 ε01 = −ε10 = 1 γ 0 =
(

0 1
1 0

)

γ 1 =
(

0 1
−1 0

)
γ 5 = γ 0γ 1 γ µγ 5 = εµνγν .

The scalar and pseudoscalar massless free fields are decomposed as φ(x) = φ(x+)+φ(x−), φ̃(x) = φ(x+)−φ(x−),
such that ∂µφ(x) = εµν∂

ν φ̃(x).
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This leads to a ‘new’ effective action in (2.4) which is given in terms of the Lagrangian density

Leff = ψ̄ �D(A)ψ − moψ̄ψ + 1
2Aµ Aµ (2.7)

where the covariant derivative is defined by �D(A)
.= (i � ∂ − g �A). The fermionic piece of the

effective theory exhibits local gauge invariance. The local gauge non-invariance of the model
is carried by the last term in the effective Lagrangian density (2.7). In order to decouple the
Fermi and vector fields in the Lagrangian (2.7), we introduce the parametrization of the vector
field components A± in terms of the U(1) group-valued Bose fields (U, V ) as [14]

A+ = 1

g
U−1i∂+U A− = 1

g
V i∂−V −1 (2.8)

such that

ψ̄ �D(A)ψ = (V −1ψ(1))
†(i∂−)(V −1ψ(1)) + (Uψ(2))

†(i∂+)(Uψ(2)). (2.9)

The decoupling is performed by the (Abelian) fermion chiral rotation [13]

ψ = �χ (2.10)

where the chiral rotation matrix � is given by

� = 1
2 (1 + γ 5)U−1 + 1

2 (1 − γ 5)V . (2.11)

Introducing in the functional integral the identities

1 =
∫

DU [det D+(U)]δ(gA+ − U−1i∂+U)

1 =
∫

DV [det D−(V )]δ(gA− − V i∂−V −1)

(2.12)

the change of variables from (A+,A−) to (U, V ) is performed by integrating over the vector
field components A±. Performing the fermion chiral rotation (2.10) and taking into account
the corresponding change in the integration measure [13], we obtain

Dψ̄ Dψ DA+ DA− = Dχ̄ Dχ DU DV J [U,V ] (2.13)

with

J [U,V ] = exp

{
−i(�[U ] + �[V ]) − i

c

g2

∫
d2z (U−1∂+U)(V ∂−V −1)

}
(2.14)

where�[G] is the Wess–Zumino–Witten functional [17], which enters in (2.14) with a negative
level. In the Abelian case the WZW functional reduces to the free action

�[G] = �[G−1] = 1

8π

∫
d2z ∂µG

−1∂µG. (2.15)

Due to the absence of local gauge invariance, the last term in (2.14) has been added by
exploiting the regularization freedom in the computation of the Jacobians. Since the effective
fermionic theory is invariant under local gauge transformations we shall use the ‘gauge-
invariant regularization’ by setting† c = g2/4π .

† A different choice of regularization implies a redefinition of the β parameter of the sine–Gordon theory
(equation (2.31)) and the physical range for the coupling constant g. Defining the arbitrary regularization parameter a
by c = g2a/4π , we obtain β2 = 4π [1 + (g2/2π)(a − 1)]/[1 + (g2/2π)(a + 1)]. This also leads to unconventionally
normalized currents. The standard theory corresponds to setting a = 1.
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Using the Polyakov–Wiegman identity [18]

�[UV ] = �[U ] + �[V ] +
1

4π

∫
d2z

(
U−1∂+U

)(
V ∂−V −1

)
(2.16)

we obtain

J = e−i�[UV ] (2.17)

where "
.= UV is a gauge-invariant field. The effective action is given by

Weff =
∫

d2z
{
χ̄ i�∂χ − mo

(
χ∗
(1)χ (2)(UV )−1 + χ∗

(2)χ (1)(UV )
)}

−�[UV ] − 1

2g2

∫
d2x

(
U−1∂+U

)(
V ∂−V −1

)
. (2.18)

The vector fields in two dimensions can be decomposed as

Aµ = − 1

g
(εµν ∂

ν φ̃ + ∂µη) (2.19)

which corresponds to parametrizing the Bose fields (U, V ) as follows:

U = ei(φ̃+η) V = ei(φ̃−η). (2.20)

The effective Lagrangian density, corresponding to the action (2.18), can be written as

Leff = LI [χ̄ , χ, φ̃′] +
1

2g2
(∂µη)

2 (2.21)

where

LI [χ̄ , χ, φ̃′] = − 1
2 (∂µφ̃

′)2 + χ̄ i�∂χ − mo(χ
∗
(1)χ (2)e

−2iαφ̃′
+ h.c.) (2.22)

with

φ̃′ =
(

1 + g2/π

g2

)1/2

φ̃ = α−1φ̃. (2.23)

The 2n-point functions of the Fermi fields of the massive Thirring model are obtained
by functional derivation of the generating functional with respect to the Grassmann-valued
sources θ̄ and θ , and can be written as

〈0|ψ̄(x1) . . . ψ̄(xn)ψ(y1) . . . ψ(yn)|0〉′ = 〈0|
n∏

i=1

eiη(xi )
n∏

j=1

e−iη(yj )|0〉o

×〈0|
n∏

i=1

χ̄(xi) e−iαγ 5φ̃′(xi )
n∏

j=1

χ(yj ) eiαγ 5φ̃′(yj )|0〉I (2.24)

where the notation 〈0| · |0〉o denotes an average with respect to the free massless η-field theory
and 〈0| · |0〉I denotes an average with respect to the effective Lagrangian LI [χ̄ , χ, φ̃′]. The
computation of the correlation functions (2.24) is performed using the vacuum functional of
the theory, which provides the functional integral Gell’Mann–Low formula. Following the
standard procedure [6, 10], we perform the expansion of the exponential of the interaction
term of LI [χ̄ , χ, φ̃′] in a power series of the bare mass mo. The resulting correlation function,
besides the contributions of the field φ̃′, corresponds to averages of products of chiral density
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operators χ̄(xi)χ(yj ) with respect to the free Fermi theory. The effective bosonized theory
can be obtained by reconstructing the series using the free-field bosonization expressions†

χ(x) =
(
µo

2π

)1/2

e−i 1
4 πγ

5
: exp

{
i
√
π

{
γ 5ϕ̃(x) +

∫ +∞

x1

˙̃ϕ(x0, z1) dz1

}}
: (2.25)

χ̄ i�∂χ ≡ 1
2 : (∂µϕ̃)

2 : (2.26)

χ∗
(1)χ(2) ≡ µo

2π
: e2i

√
πϕ̃ : (2.27)

where : · : indicates normal ordering with respect to the free propagator (� +µ2
o)

−1 in the limit
µo → 0. In this way, the effective bosonized Lagrangian density is given by

Lbos
eff = 1

2 (∂µϕ̃)
2 − 1

2 (∂µφ̃
′)2 +

1

2g2
(∂µη̃)

2 −
(
moµo

π

)
cos

{
2
√
πϕ̃ + 2αφ̃′}. (2.28)

In order to recast the Lagrangian (2.28) in terms of the standard sine–Gordon theory, we
introduce two independent fields +̃ and ξ̃ through the canonical transformation

β+̃ = 2
√
πϕ̃ + 2αφ̃′ (2.29)

βξ̃ = 2αϕ̃ + 2
√
πφ̃′ (2.30)

with

β2 = 4π

1 + g2/π
(2.31)

and the field ξ is quantized with a negative metric. In terms of these new fields, the effective
bosonized Lagrangian density can be written as

Lbos
eff = −1

2
(∂µξ̃ )

2 +
1

2g2
(∂µη̃)

2 +
1

2
(∂µ+̃)2 − m′

o cos[β+̃]. (2.32)

The effective bosonized theory is described by the sine–Gordon theory and two decoupled
massless fields quantized with opposite metrics. As a matter of fact, the extraction of these
‘decoupled’ massless Bose fields relies on a structural problem which is related to the fact that
the fields η and ξ do not belong to the field algebra �′ and cannot be defined by themselves as
operators in the Hilbert space of states [12, 13, 14]. We shall return to this point later.

3. Field algebra and Hilbert space

It is instructive to express the original Fermi field ψ and the source terms in the generating
functional (2.4) in terms of the sine–Gordon field +̃. Performing the fermion chiral rotation
(2.10), together with the canonical transformations (2.30), and using the bosonized expression
(2.25) for the free massive Fermi field, we obtain the Fermi field ψ(x) of the massive Thirring
model in terms of the Mandelstam [19] ‘soliton’ field -+(x) as

ψ(α)(x) = �(x)αβχβ(x) = -+
(α)(x) σ (x) (3.33)

where

-+
(α)(x) =

(
µo

2π

)1/2

e−i 1
4 πγ

5
αα : exp i

{
β

2
γ 5
αα+̃(x) +

2π

β

∫ +∞

x1

˙̃
+(x0, z1) dz1

}
: (3.34)

† In order to consider the massive Thirring model as a mass perturbation around the fixed point of the massless theory
we must require for the dimension of the mass operator dim(ψ̄ψ) = β2/4π < 2, where β2 = 4π/(1 + g2/π).
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and represents the original Fermi field degrees of freedom [19]. In equation (3.33) both spinor
components of the Mandelstam field -+

(α)(x) are multiplied by the exponential field

σ(x) = ei[η(x)+gξ(x)]. (3.35)

The auxiliary vector field (2.19) can be written as

Aµ = −g
β

2π
εµν∂

ν+̃ + 0µ (3.36)

where 0µ is a longitudinal current

0µ = −∂µ

(
ξ +

1

g
η

)
= ∂µ0. (3.37)

Taking into account the invariance of the fermionic part of the effective theory under
local gauge transformations, the fermionic current Jµ = ψ̄γ µψ , is computed using a gauge-
invariant regularization, and we obtain the bosonized expression [16, 19]

Jµ = − β

2π
εµν∂ν+̃. (3.38)

The bosonized interpolating generating functional (2.4) can be written as

Z ′[θ, θ̄ , ζ µ] = N −1
∫

D+̃ eiW[+̃]
∫

Dη eiWo[η]
∫

Dξ e−iWo[ξ ]

× exp

{
i
∫

d2x {(-+σ ∗) θ + θ̄ (-+σ) + ζµ0µ}
}

(3.39)

where Wo[η] is the free action for the non-canonical massless field η, Wo[ξ ] is the free action
for the massless field ξ , which is quantized with negative metric and W[+̃] is the action for
the sine–Gordon field +̃.

From the generating functional Z ′ we obtain the general 2n-point functions for the Fermi
field of the massive Thirring model in terms of averages of order-disorder operators of the
sine–Gordon theory

〈0|ψ̄(x1) . . . ψ̄(xn)ψ(y1) . . . ψ(yn)|0〉′ = 〈0|-+(x1) . . . -
+(xn)-

+(y1) . . . -
+(yn)|0〉

×〈0|σ ∗(x1) . . . σ
∗(xn) σ (y1) . . . σ (yn)|0〉o (3.40)

where the notation 〈0| · |0〉 denotes an average with respect to the sine–Gordon theory and
〈0| · |0〉o denotes an average with respect to the free theories of the massless Bose fields η and
ξ . Due to the opposite metric quantization for the fields η and ξ , the functional integration
over the field ξ cancels those arising from the integration over the field η in such a way that
the field σ generates constant contributions to the Wightman functions

〈0|σ ∗(x1) . . . σ
∗(xn) σ (y1) . . . σ (yn)|0〉o = 1 (3.41)

implying that

〈0|ψ̄(x1) . . . ψ̄(xn)ψ(y1) . . . ψ(yn)|0〉′ = 〈0|-+(x1) . . . -
+(xn)-

+(y1) . . . -
+(yn)|0〉.

(3.42)

In this way, we obtain the fermion–boson mapping between the massive Thirring and sine–
Gordon theories in the Hilbert subspace of states H′. For any global gauge-invariant functional
F{ψ̄, ψ} ∈ �, we obtain the general one-to-one mapping

〈0|F{ψ̄, ψ}|0〉′ ≡ 〈0|F{-+,-+}|0〉. (3.43)
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From the generating functional (3.39) we see that the longitudinal current (3.37) generates
zero norm states from the vacuum

〈0|0µ(x) 0µ(y)|0〉 = 0 (3.44)

and thus the Hilbert space H′ is positive semi-definite.
Although the partition function obtained from (3.39) factorizes in the form

Z ′[0] = Zo
η[0] × Zo

ξ [0] × Z+[0] (3.45)

the fact that the spurious field σ appears attached to the bosonized Fermi field -+ in the source
terms implies that the generating functional (3.39) cannot be factorized and the massless scalar
fields cannot be removed in a naive way, contrary to what is usually done [10, 4]. As a matter
of fact, the bosonization procedure leads to the appearance of the spurious field

σ(z) = exp{ig0(z)} (3.46)

implying a structural problem that refers to the existence of infinitely delocalized states σn|0〉
in H′, and that would imply the violation of the asymptotic factorization property of the
corresponding Wightman functions. Although the field σ generates constant contributions
to the Wightman functions, this field cannot be defined by itself in H′ and the cluster
decomposition property is not violated. This question can be clarified on the basis of the
intrinsic algebraic structure of the model.

The set of fields {ψ̄, ψ} constitute the intrinsic mathematical structure of the Thirring
model and generates the local polynomial field algebra � = �{ψ̄, ψ}. The Wightman functions
generated from the field algebra � define the model and identify the Hilbert space H of
the theory, H .= �|0〉. The introduction of the auxiliary vector field aµ enlarges the field
algebra � → �′ = �′{aµ, ψ̄, ψ}, and the change of variables (2.5) leads to a field algebra
�′ = �′{Aµ, ψ̄, ψ}. This field algebra is represented in the enlarged Hilbert space H′ .= �′|0〉.
Within the bosonization procedure the fundamental fields defining the field algebra �′ are
written in terms of the Bose fields {+̃, η̃, ξ̃}. This set of Bose fields define an enlarged redundant
field algebra �B , which is represented in the indefinite metric Hilbert space HB .= �B |0〉. These
Bose fields are the building blocks in terms of which the bosonized solution is constructed and,
as stressed in [12, 13, 14], should not be considered as elements of the intrinsic field algebras
�′. Only some particular combinations of them belong to the field algebra �′, in such a way
that, �′ ⊂ �B , and thus, H′ ⊂ HB . The auxiliary vector field Aµ = gJµ + 0µ, belongs to
the field algebra �′ and since Jµ ∈ �′, then, 0µ ∈ �′. In this way, the positive semi-definite
Hilbert space H′ is generated from the field algebra �′{Aµ, ψ̄, ψ} = �′{�o, -

+σ ∗, -+σ },
where �o ⊂ �′ is the field subalgebra generated by the longitudinal current 0µ, �o = �o{0µ},
and that generates zero norm states: Ho

.= �o|0〉 ⊂ H′. The field 0 = −(ξ + (1/g)η), that acts
as the potential for the longitudinal current 0µ, does not belong to the field algebra �′ and only
its spacetime derivatives occur in �′. In this way, the exponential field σ given by (3.46) also
does not belong to �′. Since the field σ cannot be defined by itself in H′, the Hilbert space
cannot be factorized, H′ �= Hσ ⊗ H-+ .

From the algebraic point of view, the fact that the field σ does not belong to the field
algebra �′ and thus cannot be defined as an operator in H′, follows from the charge content of
HB and H′, since some topological charges† become trivialized in going from HB to H′ [12].

† These charges are called topological in the sense that the corresponding conservation laws are totally unrelated to
any Noether symmetry exhibited by the Lagrangian defining the model.



Structural aspects of functional integral bosonization 2763

To begin with, consider the following currents belonging to the Bose field algebra �B :

j
µ

1
.= Aµ + ∂µξ (3.47)

j
µ

2
.= Aµ +

1

g
∂µη. (3.48)

Although the vector field Aµ belongs to the field algebra �′, the field derivatives ∂µη

and ∂µξ belongs to the Bose field algebra �B , they only occur in �′ as the combination
0µ = −∂µ(ξ + (1/g)η). This ensures that jµ

i ∈ �B . The corresponding charges are

Qi
.=

∫ +∞

−∞
dz1 j 0

i (z) (3.49)

such that [Qi ,�B
] �= 0. (3.50)

This implies that the charges Qi do not vanish on HB :

QiHB �= 0. (3.51)

The charges Qi commute with ψ , Jµ and 0µ, that is

[Qi ,�o] = 0 [Qi ,�] = 0 → [Qi ,�′] = 0. (3.52)

This means that the charges Qi are trivialized in the restriction from HB to H′ [12, 13, 14]:

Qi HB �= 0 Qi H′ = 0 Qi H = 0. (3.53)

Since [Qi , σ ] = ασ , the state |σ 〉 = σ |0〉 cannot belong to H′ and the field σ cannot be
defined as an operator in the Hilbert space H′ [12, 13, 14]. This ensures that the asymptotic
factorization property of the Wightman functions holds in H′†.

The states in H′ can be accommodated as equivalence classes modulo 0µ, in such a way
that the Hilbert space H is the quotient space

H ∼ H′

Ho

. (3.54)

From the operator point of view, the equivalence established by equation (3.42) implies
the algebraic isomorphism

�{ψ̄, ψ} ∼ �′′{-+σ ∗, -+σ } ∼ �{-+,-+} (3.55)

where �′′{-+σ ∗, -+σ } ⊂ �′{�o, -
+σ ∗, -+σ }. In this sense we obtain the equivalence

Z ′[θ, θ̄ , 0] ∼ Z[θ, θ̄ ] ∼ Z+[θ, θ̄ ] (3.56)

† A distinct situation occurs in the standard Schwinger model [12, 20, 21], in which the Fermi field belonging to the

intrinsic field algebra �S is given by ψ = ei
√
πγ 5"̃ ψ̂ ∈ �S , where "̃ is a free scalar field of mass m = e/

√
π ,

ψ̂ is given in terms of the free Fermi field ψo as ψ̂ = ei
√
πγ 5 η̃ψo and η̃ is a free massless field quantized

with a negative metric. Since the field "̃ can be written in terms of the gauge-invariant field Fµν ∈ �S , i.e.

"̃ = (1/2m)εµνFµν ∈ �S , implying that ei
√
πγ 5"̃ ∈ �S and thus ψ̂ ∈ �S . In this way the field ψ̂ can be

defined as operator in the Hilbert space HS . The vector current is given by Jµ = ψ̄γ µψ = −(1/
√
π)εµν∂ν"̃ + 0µ,

where 0µ is the longitudinal current 0µ = −(1/
√
π)∂µ(η + φ) and φ is a massless scalar field that acts as the

potential for the conserved free fermionic current. The field algebra of the model is generated by ", ψ̂ and 0µ, i.e.
�S = �S{", ψ̂,�o}, where �o is the field subalgebra generated by 0µ. Since ψ̂ ∈ �S , we can define the spurious
field ψ̂∗

(1)ψ̂(2) = σ ∗
1 σ2 = exp{2i

√
π(η̃ + φ̃)} ∈ �S . The only reason for σ ∗

1 σ2 not being the identity operator in HS is
that it carries the chiral selection rule, implying that the asymptotic factorization property of the Wightman functions
is violated.
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with

Z+[θ, θ̄ ] = N −1
∫

D+̃ eiW[+̃] exp

{
i
∫

d2x
{
-+(x) θ(x) + θ̄ (x)-+(x)

}}
(3.57)

and the fermion–boson mapping between the massive and sine–Gordon theories is established
in a positive-definite Hilbert space.

4. Conclusions

In conclusion, we have considered the functional integral bosonization using the auxiliary
vector field to discuss a model with well known and established results in the literature. The
bosonization procedure introduces extra degrees of freedom that should not be considered as
elements of the fundamental field algebra defining the model. In order to exert control on the
effect of the redundant Bose fields and obtain the fermion–boson mapping in the Hilbert space of
states, the functional integral bosonization must be performed on the generating functional. The
factorization of the partition function will generally lead to incorrect conclusions concerning
the physical content of the model, such as the existence of infinitely delocalized states and the
violation of the asymptotic factorization property of the Wightman functions.

The extension of the bosonization procedure to dimensions higher than two has been the
subject of intensive efforts over the last few years. Unfortunately, until recently investigations
of the fermion–boson mappings in 2 + 1 dimensions were limited to a perturbative analysis
and not to exactly solvable theories. Since these mappings generally are established on the
level of factorizable partition functions, a foundational investigation of the basic structural
properties of the fermion–boson mappings in 2 + 1 dimensions may offer a valuable lesson for
the understanding of the underlying physical properties of the higher-dimensional field theory
models. A clear understanding of these points seems to us essential in order to ensure that
the fermion–boson mapping is established on the Hilbert space of states and thus may offer
information about the true physical content of the original theory.
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